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ABSTRACT

Active topological phase transitions widely occur in active matters and biological systems, such as developing embryos. Since the discovery
of the intriguing bulk-boundary effects of topological insulators in Hermitian and non-Hermitian systems, various electric, optical, acoustic,
and mechanical topological metamaterials with efficient energy transmission and robust defect-immunization have been designed. To date,
however, it remains a challenge to precisely and fast manipulate the topological phase transitions in elastic topological insulators. In this
paper, on the basis of theoretical analysis and numerical simulations, we propose an active strategy to achieve this aim through a combina-
tion of pneumatic actuation and liquid metals. The proposed method can precisely tune the connecting stiffness and vertex mass in the
tight Su–Schrieffer–Heeger model. Thus, we realize the effective and fast control of topological phase transitions and elastic wave bandgap
switching. We also uncover the active spinning bulk-boundary effects and higher-order topological states in the elastic topological insulators,
demonstrating the high effectiveness and practicability of the proposed method. In addition, the differences between the 1D edge and 0D
corner higher-order states are specified by information entropy theory. This work not only gains insights into the active manipulation of
topological phase transitions but also inspires novel strategies to design active topological materials through untethered methods, e.g., mag-
netism or biological cells.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0141556

I. INTRODUCTION

The discovery of the quantum Hall effect and the quantum
spin Hall effect in two-dimensional (2D) materials1–8 is beyond the
classification of spontaneous symmetry breaking.8,9 Due to the
intriguing bulk-boundary effect of the quantum Hall state, the elec-
tric current can pass along the 2D sample edges and, thus, avoid
dissipation in the bulk.7–11 The edge state exhibits great robustness
to the geometric defects in the material and promotes the highly
efficient transmission of energy or information without backscatter-
ing.10,12,13 In the 2D honeycomb-net model (also referred to as
“2D graphite”), Haldane14,15 introduced two parameters, t1 and t2,
to describe the electrons hopping between the nearest- and second-
neighbor bonds in a lattice system. Their model does not require

an external magnetic field.14 Due to the difference of t1 and t2, the
time-reverse symmetry of the lattice system is broken, rendering
the presence of topological (with nonzero topological invariants)
and trivial states. The hopping parameters in the 2D or three-
dimensional (3D) artificial microstructures can be determined by
using the Hermitian model4,10,13,16–20 or the non-Hermitian tight
Su–Schrieffer–Heeger (SSH) model.21–26

With the rapid development of additive manufacturing tech-
nology, advanced materials with complex topologies can be fabri-
cated. Thereby, several one-dimensional (1D), 2D, and 3D tight
models in experiments have been proposed to achieve specified
functionalities, for example, topological phase transitions27–35 and
higher-order topological states17,29,36–50 in Hermitian systems,
and exceptional points51–57 and skin effects21,22,25,26,58 in the
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non-Hermitian system.24 For different topological functional
metamaterials, periodic lattice structures consisting of unit cells
can be designed by varying, for example, the distances of lattice
vertices,16,17,19,36,45,47,59,60 the symmetry breaking of vertex
masses,61–72 the rotation of inclusions,40,73–79 the connecting
tube diameters,29,38,39,41–43,49,80,81 and the stiffness of
springs.6,82–85 Besides, the optimization of microstructured
metamaterials can be performed by using inverse analysis
methods, such as topology optimization86–91 and machine learn-
ing methods.92–95 To achieve fast switching control of the degen-
eracy points and topological phase transitions, these methods
need to rebuild new structures.96

In nature, many biological systems utilize different mechanisms
to achieve their multiple functions. For instance, cytoskeleton97,98

can make a fast self-adapting deformation and re-organization,
which plays a critical role in cell metastasis.98,99 To protect them-
selves, Chameleons,100 Parachinsectsn innesi,101 and Charidotella
egregia102 can instantaneously change their colors through actively
tuning the crystal morphologies in their skin cells. These intelligent,
active control methods of biological systems have attracted much
attention in artificial functional metamaterial designs.

On the one hand, the actuation methods of light,103–105

magnetism,106–111 electricity,22,65,112–114 air pressure,82,115–128

heat,129–132 mechanical strain,133,134 and biochemistry135–147 are
taken to drive microstructured complex deformation modes, such
as tension, compression, bending, twisting, and their combina-
tions.103,111 On the other hand, these active, manipulated behaviors
of deformations and motions in structures may also affect their
topological properties in energy or information transmissions. For
instance, spinning gyroscopes,148–151 rotors,152,153 Floquet mecha-
nisms,154 fluid chambers,65,155 and movable components156 are
used to tune the effective microstructured masses, which determine
their topological or trivial states. Besides, the dielectric elastic com-
posite films59,157–159 and piezoelectric beams160,161 can be electri-
cally actuated to achieve the topological phase transitions in
elastic,96 acoustic, and photonic insulators. Up to now, however, a
facile and highly effective strategy for the design of active, intelli-
gent topological metamaterial remains an open challenge.162–165

In this paper, inspired by Chameleons, starfish pipes,166 and
cell communication,167 we propose a novel pneumatic actuation
method that can actively manipulate the deformations, connected
chamber stiffnesses, and vertex masses of the 1D and 2D elastic
SSH lattice models. This paper is organized as follows. In Sec. II,
the proposed active pneumatic actuation method is described. The
relations of connected chamber stiffness and vertex mass (liquid
metal) with respect to the active air pressures are uncovered. In
Sec. III, on the basis of numerical and theoretical analysis of com-
posite microstructures, the proposed active method successfully
manipulates the switching of degeneracy points in the dispersion
spectrums. Then, the active topological phase transitions with
respect to the driven air pressures in the microstructures are ana-
lyzed in Sec. IV. In Sec. V, the active bulk-boundary effects,
including the quantum spin or valley Hall effects (QSHE and
QVHE), are precisely manipulated through the proposed pneu-
matic strategy. Furthermore, the complex active interfaces are
automatically constructed by the proposed method and used
to obtain active higher-order topological states in Sec. VI.

Besides, the information entropy theory is also employed to dis-
tinguish the lower and higher states.

II. ACTIVE PNEUMATIC ACTUATION MODEL

Chameleons can fast and actively tune their skin color, when
they are in a dangerous environment [Fig. 1(a)]. In an excited state,
the osmotic pressure in the skin cells increases instantaneously,
which increases the cell volume. Therefore, the distance of Guanine
crystals in the skin cells becomes larger, thus resulting in a blue
shift in the reflectivity of s-iridophores [Fig. 1(a)]. Inspired by this
active mechanism, we propose a pneumatic control strategy to
actively manipulate the 1D composite structure composed of
the soft air chambers (blue color) and liquid metals (red color)
[Figs. 1(b) and 9(a)].

Based on the tight SSH model [Fig. 1(b)], we define a compos-
ite unit cell consisting of two metallic masses and two air chambers
connected together. The left (yellow box) and right (green box)
chambers have the intracell and intercell connected stiffness k1(PK)
and k2(PK), respectively. Besides, the left and right liquid metals
have varying masses m1(PM) and m2(PM). PK and PM are the active
air pressures.

A. Active change of connected stiffnesses

First, in each unit cell, the connected intracell air chamber can
actively deform under the actuation of suction (PK , 0) or infla-
tion (PK . 0) [Fig. 1(c)], while the intercell air chamber cannot.
Therefore, the intracell chamber has a shrinking or expanding
deformation mode with the active air pressure PK , 0 or PK . 0,
which can be calculated by the nonlinear finite element method
(Appendix B).

In this model, we take the characteristic size of unit cells as
a = 40mm, which was determined according to our fabrication
method. Thus, the intercell chamber may undergo expanding or
shrinking deformations caused by the shift of the intracell chamber
[Fig. 1(c)]. For instance, the displacement fields of the second mass
are shown in Fig. 1(e). Once the active actuation has been removed,
all deformation modes [Fig. 1(c)] of the unit cell may return to its
initial state with PK = 0.

The deformation of the unit cell is calculated through numeri-
cal simulations, and then the deformed geometries of the air cham-
bers are exported for the uniaxial compression test. For simplicity,
we ignore the effects of stress on the chamber stiffness. In Fig. 1(c),
the bottom regions of the deformed chambers are fixed, and we
apply a y-direction displacement u on the top surfaces of the cham-
bers. Through finite element calculations, the compression stiff-
nesses of the intercell and intracell chambers under prescribed air
pressures PK can be obtained.

In Fig. 1(f), we uncover the nonlinear relations of the varying
stiffness k1 (intracell) and k2 (intercell) with respect to PK. At the
initial state, the stiffness satisfies k1(PK ¼ 0) ¼ k2(PK ¼ 0). As the
actuation has PK < 0, the intracell stiffnesses k1(PK) (green points)
are smaller than the intercell stiffness k2(PK) (red points). Once the
pneumatic actuation PK is positive, the intracell stiffness k1(PK)
becomes larger than the intercell stiffness k2(PK). The reason is that
the chamber walls in the negative air pressures or compression
states are easier to buckle, which results in a low stiffness. Further,
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this precise relation of ki � PK(i ¼ 1, 2) [Fig. 1(f ) and Table I] is

k1(PK) ¼ 0:055þ 0:073PK � 0:032P2
K � 1:415P3

K, PK

[ [�0:25, 0:2] kPa, (1)

k2(PK) ¼ 0:055� 0:096PK þ 0:458P2
K � 0:383P3

K, PK

[ [�0:25, 0:2] kPa: (2)

A larger deformation of the intracell and the intercell cham-
bers may stop the numerical calculations. The active air pressures
PK are suggested in the interval [−0.25, 0.2] kPa.

B. Active change of masses

Starfish can fast store and discharge water due to its unique
pipe systems.166 Besides, a tuning nanotube (TNT) between two
cells makes it possible to achieve cell communication over a long

FIG. 1. Active exchange of the connected air chamber stiffness and vertex mass. (a) Actively and fast color tuning mechanism of chameleons.100 Reproduced with permis-
sion from Teyssier et al., Nat. Commun. 6, 1–7 (2015). Copyright 2015, Author(s) under a Creative Commons Attribution (CC BY) license. In the excited state, the distance
of the guanine crystals becomes smaller compared to the patterns in the relaxed state generated by the bio-chemo-mechanical control. (b) The tight Su–Schrieffer–Heeger
(SSH) model composed of “C–N” bonds. The yellow (intracell) and green (intercell) chemical bonds have different strengths. In the bottom of (b), a 1D composite active
structure is constructed, in which the red masses and blue structures are the liquid metal and air chambers. (c) The unit cell of the active elastic SSH model, in which the
connected air chambers’ stiffnesses can be manipulated by suction or inflation. (d) The active mass exchange can be achieved through the combination of air and liquid
metal chambers (eGaIn alloys), which also allows us to measure the mass exchange. (e) Displacements of specimen #2 vs the active air pressures. (f ) The relations of
intracell and intercell air chamber stiffnesses with respect to the active air pressure PK. (g) The vertex masses vs the active air pressure PM.
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distance.164 The macromolecular organelles and Ca+ ions can trans-
port from one cell to another through the TNT, which are impor-
tant physiological phenomena in cancer cell metastasis.

Inspired by these active mechanisms, the mass exchange of
metallic particles #1 and #2 is possible. To achieve this goal, we
construct two structures connected by a soft tube [red color in
Fig. 1(d), and Figs. 9(b) and 9(c)]. Each structure has two sub-
spaces separated by a thin septum [green color in Fig. 1(d)]. The
top (blue color) and bottom (red color) spaces are the liquid
metal and air chambers. At the initial state, the top subspace of
each structure is infilled with the same liquid metal eGaIn

alloys,168,169 and the connecting tube is also encapsulated with
the liquid metal.

Further, the left air chamber is actuated with PM > 0, and it
has an expanding deformation [Fig. 1(d)]. The deformation may
push the liquid metal in the top liquid chamber of the left structure
into the top liquid chamber of the right structure, which eventually
has m1(PM) , m2(PM). When the PM is negative, the left-bottom
air chamber has a shrinking deformation, which finally results in
m1(PM) . m2(PM). These actuations are fast and reversible.
Figure 1(g) gives the precise relation of δm and PM by performing
twice experimental tests (Tables II and III), and they are

δm1(PM) ¼ 0:0022P3
M � 0:0474P2

M � 0:864PM þ 0:0029, PM(kPa) � 0,
0:0026P4

M þ 0:0616P3
M þ 0:4132P2

M � 0:0384PMP þ 0:0392, PM(kPa) � 0,

�
(3)

δm2(PM) ¼ �0:0022P3
M þ 0:0474P2

M þ 0:864P � 0:0029, PM(kPa) � 0,
�0:0026P4

M � 0:0616P3
M � 0:4132P2

M þ 0:0384P � 0:0392: PM(kPa) � 0,

�
(4)

where PM [ [�0:01, 0:01] kPa, and δmi is the value of mass
change. This dimeric system can be extended to the complex hon-
eycomb lattice [Fig. 1(d)] by adding some connecting tubes in the
corresponding chambers. In the numerical eigenanalysis, the
varying material density of the liquid metal is written as

ρL,i(PM) ¼ ρ0 þ
δmi(PM)
V0η

, (5)

where ρ0 = 7.4 × 10−3 g mm−3 is the density of the nickel neodym-
ium magnet,33 which is close to the density of liquid metal eGaIn
alloy 6 × 10−3 g mm−3. V0 ¼ πr20t is the constant volume with
r0 = 3.4 mm and t = 1 mm [Fig. 9(a)]. Therefore, the balancing
mass is m0 = ρ0V0=0.269 g with PM ¼ 0 in all calculation models.
To obtain a suitable change of density, we suggest that the penalty
factor η is set at 50 in the simulations, and all varying densities of
liquid metal are listed in Table IV. Besides, the elastic modulus and
Poisson’s ratio are assumed to be 41 GPa and 0.28, respectively.

In the pneumatic strategy, PK and PM have different function-
alities for actively tuning the connected stiffness and vertex mass,
respectively. In Secs. III A–III C, we extend these relations
[Figs. 1(f ) and 1(g)] to research the active topological effects in 1D
and 2D systems.

III. ACTIVE SWITCHING OF DIRAC POINTS

In this section, we uncover the effects of the active stiffnesses
and masses on the bandgaps by extending the 1D SSH model
[Fig. 1(c)] to the 2D C4, C6, and C3 microstructures. Based on the
periodic Bloch theory, we calculate the dispersion curves of all 1D
and 2D unit cells under different pneumatic pressures (PK or PM)
through numerical simulations and theoretical analysis.

A. Deformations of 2D models

In this subsection, we design three types of 2D unit cells
[Figs. 2(a)–2(c)] through the combination of 1D SSH models
[Fig. 1(c)]. In Fig. 2(a), the square unit cell with C4 symmetry

TABLE I. Stiffness of the intracell and intercell chambers vs PK.

PK (kPa)

Suction

−0.2 −0.165 −0.14 −0.12 −0.10 −0.08 −0.06 −0.04 −0.02

k1 (N/m) 0.047 0.047 0.048 0.048 0.049 0.049 0.051 0.052 0.053
K2 (N/m) 0.085 0.081 0.077 0.074 0.0700 0.066 0.063 0.060 0.057

PK (kPa)

Inflation

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

k1 (N/m) 0.056 0.058 0.059 0.060 0.060 0.061 0.061 0.061 0.061 0.061
K2 (N/m) 0.053 0.052 0.051 0.050 0.050 0.049 0.049 0.049 0.048 0.048
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contains the same four metallic masses and twelve air chambers,
and its crystal constant is a [Fig. 10(a) in Appendix B]. The inter-
nal four air chambers are the active components that can be actu-
ated by the pneumatic pressures PK, which results in the shrinking
and expanding deformations in the C4 unit cell [the processes I–IV
in Fig. 2]. Here, we assume that the deformed air chambers in the
C4 unit cell have varying intracell and intercell stiffnesses as
expressed in Eqs. (1) and (2), respectively. Similarly, we also use
the 1D model to construct a 2D unit cell with C6 symmetry
[Fig. 2(b)], which has the six same metallic masses and twelve air
chambers [Fig. 10(d) in Appendix B]. The crystal constant of the

unit cell is l = 34.64 mm. The internal six air chambers can be actu-
ated by the pneumatic pressures PK, which also promotes the
shrinking and expanding deformations of the unit cell [Fig. 2(b)].
Besides, the intracell and intercell stiffnesses also satisfy Eqs. (1)
and (2).

The third unit cell is given in Fig. 2(c), and it has five air
chambers and two variable metallic masses with a crystal constant
s = l. For this unit cell, we assume that all air chambers are inactive,
and the two metallic parts can exchange their masses through the
proposed air–liquid chamber model as shown in Fig. 1(d). The
entire superstructure [Fig. 10(g) in Appendix B] can be obtained

TABLE II. Mass changes of the liquid metallic chambers with PM > 0.

First test, pressure (kPa), mass (g) Second test, pressure (kPa), mass (g)

PM (×10−3) m1 m2 δm2 δm1 PM (×10−3) m1 m2 δm2 δm1

0 20.4 18.8 0.0 0.0 0.00 18.8 20.4 0.0 0.0
0.43 20.2 19.0 0.2 −0.2 0.53 18.5 20.7 0.3 −0.3
1.00 19.4 19.8 1.0 −1.0 1.00 18.2 21.0 0.6 −0.6
1.54 18.9 20.3 1.5 −1.5 1.49 17.8 21.4 1.0 −1.0
2.03 18.4 20.8 2.0 −2.0 2.00 17.3 21.9 1.5 −1.5
2.49 17.9 21.3 2.5 −2.5 2.51 16.7 22.5 2.1 −2.1
3.06 17.3 21.9 3.1 −3.1 3.05 16.2 23.0 2.6 −2.6
3.50 16.9 22.3 3.5 −3.5 3.55 15.6 23.6 3.2 −3.2
4.02 16.3 22.9 4.1 −4.1 4.08 15.2 24.0 3.6 −3.6
4.50 15.9 23.3 4.5 −4.5 4.44 14.8 24.4 4.0 −4.0
5.00 15.4 23.8 5.0 −5.0 5.08 14.2 25.0 4.6 −4.6
5.52 14.7 24.5 5.7 −5.7 5.51 13.7 25.5 5.1 −5.1
6.00 14 25.2 6.4 −6.4 6.05 12.9 26.3 5.9 −5.9
6.55 13.2 26 7.2 −7.2 6.53 12.2 27.0 6.6 −6.6
7.07 12.5 26.7 7.9 −7.9 7.05 11.5 27.7 7.3 −7.3
7.50 12.0 27.2 8.4 −8.4 7.49 11 28.2 7.8 −7.8
8.20 11.4 27.8 9.0 −9.0 8.02 10.4 28.8 8.4 −8.4
8.50 10.9 28.3 9.5 −9.5 8.51 9.9 29.3 8.9 −8.9
9.00 10.5 28.7 9.9 −9.9 9.02 9.5 29.7 9.3 −9.3

TABLE III. Mass changes of the liquid metallic chambers with PM < 0.

First test, pressure (kPa), mass (g) Second test, pressure (kPa), mass (g)

PM (×10−3) m1 m2 δm2 δm1 PM (×10−3) m1 m2 δm2 δm1

0.00 19.4 19.8 0.0 0.0 0.0 18.7 20.5 0.0 0.0
−1.00 20.0 19.2 −0.6 0.6 −1.0 19.4 19.8 −0.7 0.7
−2.08 20.7 18.5 −1.3 1.3 −2.1 20 19.2 −1.3 1.3
−3.06 21.5 17.7 −2.1 2.1 −3.0 21.2 18 −2.5 2.5
−4.02 23.4 15.8 −4.0 4.0 −4.0 22.8 16.4 −4.1 4.1
−5.03 24.0 15.2 −4.6 4.6 −5.1 23.6 15.6 −4.9 4.9
−6.02 24.6 14.6 −5.2 5.2 −6.1 24.1 15.1 −5.4 5.4
−7.02 24.9 14.3 −5.5 5.5 −7.1 24.5 14.7 −5.8 5.8
−8.04 25.4 13.8 −6.0 6.0 −8.2 24.8 14.4 −6.1 6.1
−9.90 25.7 13.5 −6.3 6.3 −9.1 25.1 14.1 −6.4 6.4
−10.60 26.0 13.2 −6.6 6.6 −10.3 25.3 13.9 −6.6 6.6
−11.10 26.1 13.1 −6.7 6.7 −11.0 25.4 13.8 −6.7 6.7
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by making an array of this unit cell, and the active mass exchange
is possible to take place in the superstructure by adding some con-
necting soft tubes [Fig. 1(d)]. Under the I–IV actuations by PM, the
weight changes of the metallic masses in the unit cell [Fig. 2(c)]
satisfy Eqs. (3) and (4). Besides, the mass symmetry of the super-
structure [Fig. 7(g)] changes from C6 to C3.

61,63,69,72,83,158,170

All deformations and mass changes in the 1D and 2D unit
cells can be precisely manipulated by the proposed pneumatic strat-
egy, which paves a way for the following investigation of the physi-
cal functionalities of bandgaps.

B. Calculations of bandgaps

According to the results of the deformations and mass changes
obtained in Sec. III A, we take the Bloch theory (Appendix B) to
study the changes of elastic wave bandgaps in different 1D and 2D
unit cells under varying active pneumatic pressures PK or PM.

First, we take the 1D unit cell as an example. Three deforma-
tion modes of the unit cell are shown in Fig. 1(c) with the active
pneumatic pressures PK =−0.140, 0, and 0.20 kPa, and PM is kept
zero in these processes. Once the calculations of deformations are
completed, we export these deformed geometries for the following
eigenanalysis. To ensure the 1D unit cell to have the eigenmodes in
the x-direction, we fix all the y-direction freedoms in the eigenanal-
ysis. Figure 2(d) shows three types of dispersion curves highlighted
by green, red, and blue colors with the corresponding PK. At the
initial state PK = 0, the intracell and intercell stiffnesses satisfy
k1(PK) ¼ k2(PK), which results in a degeneracy at kx ¼ +π/jaj and
a closed bandgap in the red dispersion curves. Once the 1D unit
cell deviates away from its equilibrium state with PK≠ 0, the
broken symmetry of the hopping stiffnesses k1(PK) and k2(PK) may
induce the degenerated Dirac point (DP) to open instantaneously
[green and blue colors in Fig. 2(d)].

Similarly, the dispersion curves of the 2D unit cells with C4

(PK = −0.01 and 0.20 kPa) and C6 (PK = −0.1 and 0.16 kPa) sym-
metries are also calculated in the corresponding Brillion zones
[Figs. 10(b) and 10(e)]. There is no doubt that the degeneracy
points occur at X and Γ [Figs. 2(e) and 2(g)] in their initial
states with PK = 0. The double-degeneracy DP in the C6 unit
cell is caused by the higher C6 symmetry, and this feature
promotes the fold of the first irreducible Brillion zones
[Fig. 10(e)].6,36,59,160 This double degeneracy is widely observed
in topological insulators that have QSHE.7,8 Once the active
actuations start to work, the opening bandgaps can be obtained,
and this active process from PK ¼ 0 to PK = 0 takes a short
time [Figs. 2(e) and 2(g)].

In the third example [Fig. 2(c)], the intracell and intercell stiff-
nesses are set as k1 ¼ k2 (PK ; 0). In Fig. 2(i), at the initial states
PM= 0, two masses in the unit cell are m1 ¼ m2 and the unit cell has
a higher C6 symmetry. Two degeneracy points appear at the K and K 0

in the Brillion zone [Fig. 10(h)], and they form two valleys and peaks.
This feature plays a key role in the QVHE.5,68,69,83,84,171 If the actua-
tion PM begins to work, such as PM=−0.01 and 0.01 kPa, these closed
degeneracy points can open immediately [Fig. 2(i)].

C. Theoretical analysis

Now, we further construct an active spring-mass model to cal-
culate the bandgaps under different pneumatic pressures. The
active Lagrangian function6,83,84,172,173 is given as

L(PK, PM) ¼ 1
2
mi(PM) _u(p)i

� �2
� 1
2

X
i,j,i=j

ki(p,q),j(t,s)(PK) ui(p,q) � u j(t,s)

� �
� ei(p,q)-j(t,s)

h i2
,

(6)

where u and e are the vectors of the mass displacements and
the directions of the connecting springs in the x−y coordinate
[Figs. 10(c), 10(f ), and 10(i)]. _u ¼d u/d t is the velocity of the
vertex mass. (p, q) is the index of the unit cell for the 2D lattices.
The first term provides the active kinematic contribution from
mi(PM), and it is

mi(PM) ¼ m0 þ δmi(PM), (7)

where m0 ¼ ρ0V0, and the second term mainly represents the
active potential energy raised from the connected stiffnesses
ki, j(PK). i and j represent the number of vertex mass.

Inserting Eqs. (1)–(4) into Eq. (6) leads to the following eige-
nequation (Appendix B):

[Hn�n(PK)þ ω2Mn�n(PM)]�un�1 ¼ 0, (8)

where H(PK) and M(PM) are the active Hamilton and mass matri-
ces, ω is the angular frequency, and n is the dimension of the mass
freedoms in the corresponding unit cells, for example, n = 4 for the
1D case and n = 12 for the C6 unit cell.

For each case, the first irreducible Brillouin zone [Fig. 10] and
the entire Brillouin zone are taken in the theoretical analysis. In
Figs. 2(f ), 2(h), and 2( j), for a clear presentation of the results, we
just calculate two air pressures in each case, and these theoretical

TABLE IV. Effective densities (10−3 g mm−3) vs PM in the active model.

PM (kPa) × 10−3 0 1 2 3 4 5 6 7 8 9 10
#ρ1 7.40 6.89 5.77 5.77 5.16 4.52 3.87 3.21 2.54 1.89 1.24
#ρ2 7.40 7.90 9.03 9.03 9.64 10.30 10.9 11.6 12.3 12.9 13.6

PM (kPa) × 10−3 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11
#ρ1 7.62 8.10 8.71 9.32 9.85 10.25 10.5 10.63 10.69 10.76 10.98
#ρ2 7.18 6.70 6.09 5.48 4.95 4.55 4.30 4.17 4.11 4.03 3.82
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FIG. 2. Active bandgap switching of the dispersion curves in 1D and 2D lattices. (a) A C4 unit cell is constructed by the combination of the 1D unit cell [Fig. 1(c)],
and it has shrinking and expanding deformations under the actuations PK of suction and inflation. (b) A C6 unit cell is constructed by the combination of the 1D unit cell
[Fig. 1(c)], and it also has a shrinking and expanding deformation under the actuations PK of suction and inflation. (c) A C3 unit cell is constructed by the combination of
the 1D unit cell [Figs. 1(c) and 1(d)], and its mass symmetry is broken under the actuations PM. (d) The active switching of the Dirac points (DPs) in the 1D unit cell is
manipulated by the pneumatic methods. (e) The dispersion curves of the C4 lattice are calculated under varying air pressures PK, and the opening and closing of the
degeneracy DP are also actively manipulated by PK. δω is the opening width of the DP. The color bar denotes the frequencies from lower (black) to upper (yellow) orders.
(f ) The dispersion curves are calculated based on the active spring-mass model. (g) and (h) The dispersion curves of the C6 lattice. The double-degeneracy DPs are the
feature of the quantum spin Hall effect. In addition, we ignore some curves in (i) for a clear elucidation. (i) and ( j) The dispersion curves of the C3 lattice. The two valley-
peak shapes at the degeneracy points denote that the unit cell has the quantum valley Hall effect with m1 = m2 (PM = 0, PK ¼ 0). All masses shown in (d)–(h) have
the same value m0, and the active pneumatic pressure is PM ¼ 0 (PK = 0). ma is an average mass, taken as(m1 þ m2)/2.
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conclusions [Figs. 2(f ), 2(h), 2(g), and 11] are consistent with
numerical results for different unit cells.

Taken together, we have successfully extended the 1D SSH
model to construct three types of 2D unit cells. The proposed
pneumatic strategy can fast and precisely manipulate the switching
bandgaps of all 1D and 2D unit cells through numerical calcula-
tions and active theoretical analysis.

IV. ACTIVE TOPOLOGICAL PHASE TRANSITION

The active switching of the degeneracy DPs can be fast manip-
ulated by the negative or positive pneumatic pressures, as demon-
strated in Sec. III. In this section, we show the precise control of
the opening widths of the DPs under different air pressures,
because this opening width δ ω determines the bandgaps. Besides,
the relations between the active topological effects and pneumatic
pressures will be established.

For each type of the 1D and 2D unit cells defined above, the
active pneumatic pressures gradually change in the interval [−0.14,
0.20] kPa for the 1D unit cell, [−0.14, 0.22] kPa for the unit cell
with C4 symmetry, [−0.10, 0.16] kPa for the unit cell with C6

symmetry, and [−0.01, 0.01] kPa for the C3 symmetry. For a
given pneumatic pressure, the eigenanalysis is calculated at the
corresponding degeneracy point in the first irreducible zone
(Tables V–VII). Figures 3(a), 3(c), 3(e), and 3(f ) show all shifts
of the degeneracy point with respect to the pneumatic pressures.
The opening widths δω of the DP gradually increase with the air
pressure amplitudes, which are consistent with the theoretical
results [Figs. 4(a)–4(d)].

In our numerical simulations, we find that the eigenmodes
under PK < 0 and PK > 0 have different topological phenotypes. For
example, in Fig. 3(a), the two frequency points at PK =−0.12 kPa
are marked with red and blue colors [Fig. 3(a)]. The red color
denotes the higher frequency and the blue point is the lower fre-
quency. The red point has a shrinking eigenmode, in which the dis-
tance of the two masses reduces [red arrows in Fig. 3(a)]. The blue
point has an expanding eigenmode, and the two masses are away
from each other [blue arrows in Fig. 3(a)]. As the air pressure
becomes positive, such as PK = 0.20 kPa, the shrinking and expand-
ing eigenmodes belong to the lower (red) and higher (blue) fre-
quencies. This change denotes the eigenmodes of the DPs have a
topological phase transition with respect to the active pneumatic
pressures PK.

Further, a topological invariant winding number W in the 1D
SSH model is here used to describe this process of the active
topological phase transition, and the unit cell is trivial or topologi-
cal with W = 0 or W = 1, respectively. This topological invariant
reads

W ¼ 1
2π

ð
BZ

~d(kx , PK)� d
dkx

~d(kx , PK)

� �
d kx

¼ 1
2π

ð
BZ

dx@kdy � dy@kdx
jdj2

� �
d kx , (9)

where d̃ ¼ d/jdj. d ¼ (d0, dx , dy) is the vector that denotes the
coefficients of Pauli matrices, and its components satisfy the fol-
lowing relation:

H
͡

2�2(PK) ¼ d0σ0 þ dxσx þ dyσy , (10)

where H
͡

2�2(PK) is an active Hamilton matrix (Appendix B), σ0,
σx , and σy are the Pauli matrices

σ0 ¼ 1 0
0 1

� �
, σx ¼ 0 1

1 0

� �
, σy ¼ 0 �i

i 0

� �
: (11)

The Pauli coefficients are

d0 ¼ k1(PK)þ k2(PK), (12)

TABLE V. Degeneracy points vs the active actuation PK(C4).

PK (kPa) −0.14 −0.12 −0.095 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04
#1(Hz) 3.22 3.27 3.35 3.41 3.50 3.61 3.73 3.84 3.72 3.63
#2(Hz) 3.83 3.87 3.92 3.97 4.04 4.13 4.00 3.85 3.97 4.08
#3(Hz) 5.64 5.31 4.91 4.69 4.42 4.19 4.23 4.33 4.22 4.13
#4(Hz) 5.71 5.61 5.35 5.14 4.88 4.66 4.48 4.34 4.44 4.54

PK (kPa) 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
#1(Hz) 4.18 4.27 4.35 4.42 4.48 4.53 4.57 4.60 4.63
#2(Hz) 4.64 4.72 4.80 4.86 4.92 4.96 5.00 5.03 5.06
#3(Hz) 3.54 3.49 3.44 3.39 3.36 3.33 3.30 3.28 3.25
#4(Hz) 4.06 4.01 3.96 3.92 3.89 3.86 3.84 3.82 3.80

TABLE VI. Double-degeneracy points vs the active actuation PK(C6).

PK (kPa) −0.1 −0.08 −0.06 −0.04 −0.02 0.00
#1(Hz) 2.88 2.86 2.94 2.98 3.00 3.00
#2(Hz) 2.88 2.90 2.94 2.98 3.00 3.00
#3(Hz) 3.40 3.32 3.32 3.25 3.17 3.00
#4(Hz) 3.40 3.37 3.32 3.25 3.17 3.00

PK (kPa) 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
#1(Hz) 3.00 2.95 2.89 2.84 2.81 2.77 2.74 2.72
#2(Hz) 3.00 2.95 2.88 2.84 2.80 2.77 2.74 2.72
#3(Hz) 3.16 3.22 3.29 3.35 3.40 3.45 3.50 3.48
#4(Hz) 3.6 3.23 3.29 3.35 3.41 3.46 3.50 3.54
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FIG. 3. Active topological phase transitions. (a) The eigenmodes of the lower (blue) and higher (red) frequency points at PK =−0.12 kPa show expanding (blue arrows)
and shrinking deformations (red arrows), and they occur at the higher (blue) and lower (red) frequency points with PK = 0.20 kPa. δ ω L and δ ω R are the opening widths
of the DPs located at the left and right sides of PK = 0. (b) Topological invariant winding number W changes with the active pneumatic pressures. W ¼ 1, PK , 0 and
W ¼ 0, PK . 0 denote that the unit cell is topological and trivial, respectively. (c) and (d) The active topological phase transition of the quadrupole unit cell with C4 sym-
metry. Bulk polarizations are P = (0.24, 0.322) and P = (0, 0) with PK < 0 (e.g., PK =−0.07 kPa, topological) and PK > 0 (e.g., PK =−0.08 kPa, trivial), respectively. At
PK =−0.08 and 0.12 kPa, the corresponding eigenmodes have a distinct change. (e) The active topological phase transition of the unit cell with C6 symmetry. At
PK =−0.08 and 0.16 kPa, the P (polar symmetry) and d (centrosymmetry) eigenmodes are different. The topological invariants, Chern numbers are C1 ¼ 1:0,
C2 ¼ �1:0, C3 ¼ 0:98, and C4 ¼ �0:99 with PK < 0 (e.g., PK =−0.05 kPa) and C1�4 ¼ 0 with PK > 0 (e.g., PK =−0.05 kPa), respectively. (f ) The active topological
phase transition of the quadrupole unit cell with C3 symmetry. Under the actuation of PM, the Chern number changes from C1 ¼ �0:43 and C2 ¼ 0:49 with PM , 0
(e.g., PM = 0.8 kPa) to C1 ¼ 0:44 andC2 ¼ �0:49 with PM . 0 (e.g., PM = 0.8 kPa) accompanying with the exchanges of the corresponding eigenmodes.

TABLE VII. Degeneracy points vs the active actuation PM(C3).

PM × 10−3 (kPa) −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1
#1 3.218 3.22 3.22 3.22 3.22 3.22 3.22 3.23 3.25 3.28 3.32
#2 3.556 3.54 3.53 3.53 3.52 3.50 3.49 3.48 3.46 3.43 3.40

PM × 10−3 (kPa) 0 1 2 3 4 5 6 7 8 9 10
#1 3.34 3.40 3.47 3.56 3.66 3.77 3.87 3.94 3.98 3.98 3.96
#2 3.38 3.34 3.29 3.22 3.16 3.09 3.02 2.96 2.89 2.83 2.78
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dx ¼ �k1(PK)� k2(PK)cos(a kx), (13)

dy ¼ �k2(PK)sin(a kx): (14)

By inserting Eqs. (10)–(14) into Eq. (9), the winding numbers
are W = 1 and W = 0 with PK < 0 and PK > 0, respectively. Besides,
the first coefficient d0 is independent of the wave vector kx , and we
just show the relation of the dx and dy with kx [ [�π/a, π/a].
Figure 3(b) gives the entire phase diagram of dx and dy . As the
actuation PK is negative, the black circles are around the original
point with (dx , dy) ¼ (0, 0), and its winding number is W = 1,
which means the unit cell is topological at the time of suction.
These circles gradually move to the right regions with increasing
PK. Once PK is positive, the red circles are away from the original
point, and the winding number is W = 0, indicating that the unit
cell is trivial in the time of inflation. Therefore, the proposed
method can fast and precisely tune the topological and trivial states
of the 1D unit cell.

In Fig. 3(c), a similar topological phase transition of the unit
cell with C4 symmetry is also observed by the actuations of PK
(Table V). For instance, there are four eigenmodes at
PK =−0.08 kPa [Fig. 3(d)], and these modes all have a polarization

in the x-direction because of the DP being at X ¼ (π/a, 0) in the
first Brillion zone [Fig. 8(b)]. From the bottom to the top one, the
first and second modes become the fourth and third modes when
the active pneumatic is PK = 0.12 kPa. Besides, the third and fourth
modes at PK =−0.08 kPa are also changed to the second and first
modes at PK = 0.12 kPa. The unstable region [Fig. 3(c)] with a
small amplitude of jPKj is caused by the geometric deformation,
which does not affect the topological phase transition [Fig. 3(d)].

The bulk polarization P ¼ (Px , Py) is used to define the phase
transition of the active quadrupole unit cell, and it is written as10

Pj ¼ 1
2π

ð
BZ

tr[Aj]d
2 k, (j ¼ x, y) (15)

where the subscript j denotes the components in the x- and
y-direction. (Aj)mn is the Berry connection and is defined as the
inner product of i �uTm@kj�un, where m and n run over all the bands,
and �un is the displacement vector of the corresponding nth eigen-
frequency. The topological state with P ¼ (0:24, 0:32) under the
conditionPK , 0 (e.g., PK = −0.07 kPa, k1 , k2), and the trivial
state with P ¼ (0, 0) under the actuation PK . 0(e.g.,
PK = +0.06 kPa, k1 . k2).

174

FIG. 4. Active theoretical analysis of topological transitions. (a)–(d) The topological transitions of the 1D, C4, C6, and C3 unit cells calculated in the active spring-mass
models. (e) The active switching of the degeneracy DPs in the entire spaces of PK and PM. (f ) The phase diagram of the active stiffness and mass under the synergetic
actuation of pressure PK and PM. Specifically, the quantum spin Hall effect and quantum valley Hall effect can be achieved with (PK = 0, PM ; 0) and (PM = 0,
PK ; 0), respectively.
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In Fig. 3(e), owing to the double degeneracy at the DPs in the
C6 unit cell, there are four eigenmodes at each point of PK. For
instance, the P1,2(d1,2) modes of the lower (higher) frequencies at
PK =−0.08 kPa become the d1,2(P1,2) modes of the higher (lower)
frequencies at PK = 0.16 kPa, where P1,2 and d1,2 are the linear
polarization and centrosymmetry. This topological phase transition
can be described by the Chern number defined as

Cn ¼ 1
2πi

ð
Ω
F d2 k, (16)

where n is the index of the band and the integral element F ¼ ∇� A
is the Berry curvature.

First, we can obtain the distributions of the Berry curvatures
of different bands [Fig. 12 in Appendix B].85,175 Then, the Chern
number of the nth band can be obtained by integrating Eq. (16)
over the Brillouin zone Ω [Fig. 8(e)].6,84,173 When the active pneu-
matic pressure PK < 0 (e.g., PK =−0.05 kPa, k1 , k2), the Chern
numbers are C1 ¼ 1:0, C2 ¼ �1:0, C3 ¼ 0:98, and C4 ¼ �0:99
(the theoretical results are C1,2 ¼ +1 and C3,4 ¼ +1). Once the
pneumatic is PK > 0 (e.g., PK =−0.05 kPa, k1 . k2), the Chern
numbers are C1 ¼ 0, C2 ¼ 0, C3 ¼ 0:0057, and C4 ¼ 0:029, and
they are close to the theoretical result C ¼ 0. This result denotes
whether the unit cell is topological or trivial under the actuation of
suction or inflation.

In Fig. 3(f ), at the K point in the Brillouin zone [Fig. 8(h)],
the eigenmodes of the opening DPs show a similar topological
phase transition to the above cases. We can find that the linear
(blue arrow) and rotational (red arrow) eigenmodes of the first and
second eigenfrequencies at PM =−0.01 kPa become the eigenmodes
of the second and first eigenfrequencies at PM = 0.01 kPa. Similarly,
the Chern numbers of the eigenfrequencies change from
C1 ¼ �0:43, C2 ¼ 0:49 to C1 ¼ 0:44, C2 ¼ �0:49 (the theoretical
results69 are C1,2 ¼ +1/2), with the change of PM from negative to
positive values. The mesh number of the discretized Brillouin zone
may result in slight errors between the numerical Chern number
and the corresponding theoretical integers.

The above analysis shows that the proposed active strategy
provides a facile and effective method to drive the topological
phase transition in both 1D and 2D systems. Besides, we can also
further extend this method. For example, in Figs. 4(e) and 4(f ), the
synergetic actuations of PK and PM in the C6 structures are feasible.
At the point (PK = 0, PM = 0), the degeneracy takes place, and they
are divided into four quadrants. In each quadrant, it has the actua-
tions of I (PKþ, PMþ), II (PKþ, PM�), III (PK�, PM�), and IV
(PK�, PMþ), respectively. This synergetic method can not only
degrade to the cases of QSHE (PK_on, PM_off ) and QVHE
(PK_off, PM_on), but also extend the design space of the active
elastic topological insulators.

V. ACTIVE BULK-BOUNDARY EFFECTS

The topological and trivial states of the active composite unit
cells are examined in Sec. IV. In this part, a 1D periodic interface is
first constructed by the actuation of the programmable air cham-
bers in a 2D system. Later, some exceptional bulk-boundary effects

of the dispersion spectrums,7–9,12,18 such as QSHE and QVHE, are
uncovered by numerical calculations.

In Fig. 5(a), a 2D superstructure composed of six quadrupole
unit cells in the y-direction is constructed at their initial states with
PK = 0, and it has a 1D period along the direction a1 [Fig. 10(a) in
Appendix B] with the crystal constant a. All unit cells are divided
into a purple and yellow region [Fig. 5(a)], and the unit cells in the
purple and yellow regions are driven by PK > 0 and PK < 0, respec-
tively. We can find that the displacements in the x-direction of the
masses around the interface have a distinct difference [Fig. 5(a)].
Therefore, a 1D periodic interface is actively constructed between
the trivial (purple region) and topological (yellow region) unit cells.
Similarly, a periodic interface along the direction aK1 [Fig. 10(d) in
Appendix B] is also achieved [Fig. 5(b)] with the combination of
the C6 unit cells, and the air chambers in the purple and yellow
regions are actuated with PK > 0 and PK < 0, respectively. In the
third example [Fig. 5(c)], by making inflation and suction for the
vertex masses in the purple and yellow regions, we obtain a 1D
periodic interface along the direction aM1 [Fig. 10(f) in Appendix B].
Since the air chambers of the unit cell can be actively programmed,
the 1D periodic interface can flexibly move along the y-direction.

Further, active pneumatic pressures PK =−0.08 kPa (purple
region) and 0.14 kPa (yellow region) are taken to drive the occur-
rence of the 1D interface, as shown in Fig. 5(a). After the geometric
deformations are calculated, the eigenanalysis is performed by
applying the Bloch periodic boundary condition on each side of
the superstructure along the x-direction and by keeping free boun-
dary conditions on the top and bottom surfaces. The 1D Brillouin
zone is discretized into 20 subintervals, and this structure contains
21 eigenanalysis in total. Figure 5(d) shows the dispersion spectrum
that has the edge and bulk regions. The yellow color curve in the
spectrum is the boundary state, and the eigenmode of the boundary
eigenfrequency point at kx ¼ 2π/(5a) (white circle) has a concentrated
energy distribution at the 1D periodic interface [Fig. 5(a)].
Interestingly, the eigenmodes of the eigenfrequency points located at
the highlighted bulk regions [Fig. 5(d)] have disorder energy distribu-
tions in the entire structure. This exceptional boundary-bulk effect
provides an effective route for energy transmission and can be fast
manipulated by the proposed pneumatic strategy. The white curves
[Fig. 5(d)] located out of the highlighted regions may disappear if the
mass distances in the structure [Fig. 5(a)] become large enough.

In Fig. 5(e), we take the driving pneumatic pressures PK = 0.16
and −0.1 kPa in the yellow and purple regions in Fig. 5(b).
Similarly, after performing the eigenanalysis in the discretized
Brillouin zone [Fig. 5(e)], the dispersion curves corresponding to
the bulk and boundary cases are given. Unlike the single boundary
curve in Fig. 5(d), the blue and red boundary curves [Fig. 5(e)]
have different features in their eigenmodes. For details, the boun-
dary points at kx ¼ �π/5/jaK1j (white circle) and π/5/jaK1j (white
circle) have four eigenmodes, as shown in Figs. 5(g) and 5(h).
Clearly, the clockwise (blue arrow) and anticlockwise (red arrow)
rotations of the mass displacements in the white boxes show the
features of “spin-down” and “spin-up,” which are the prominent
feature of the QSHE for the energy transmission at the 1D interface
[Fig. 5(b)].7–9,12,18

In Fig. 5(f ), the dispersion spectrum is calculated under the
actuating air pressures PM = 0.01 and −0.011 kPa in the purple and
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FIG. 5. Active bulk-boundary effects. (a) The active 1D periodic interface is achieved by the programmable actuations PK < 0 (yellow region) and PK > 0 (purple region) for
the C4 unit cells. (b) The active 1D periodic interface is achieved by the programmable actuations PK < 0 (yellow region) and PK > 0 (purple region) for the C6 unit cells.
(c) The active 1D periodic interface is achieved by the programmable actuations PM < 0 (yellow region) and PM > 0 (purple region) for the C3 unit cells. (d) Dispersion
curves of the structure in (a) are calculated with PK =−0.08 kPa and PK = 0.14 kPa. The yellow color is the edge state. (e) Structure in (b) is driven by PK =−0.1 kPa
(purple region) and PK = 0.16 kPa (yellow region). The dispersion curves have red and blue spinning edge states. (f ) The dispersion curves of the structure in (c) driven
by PM =−0.011 kPa (purple region) and PM = 0.01 kPa (yellow region), respectively. (g) and (h) The eigenmodes of the edge points in (e). (i) The eigenmodes of the edge
points in (f ). The red and blue arrows represent the rotational directions of the masses marked by the white-dotted boxes in (g)–(i).
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yellow regions. The bulk regions have a peak-valley shape that is
separated by a boundary curve. Similarly, the point at the boundary
curve also obtains spinning eigenmodes [Fig. 5(i)] and a high
energy concentration at the interface [Fig. 5(c)]. Besides, the peak-
valley shape can be seen as a new freedom of pseudospin
[Fig. 4(f )], which is consistent with the QVHE.61,63,74,79,155,176,177

Together, this section demonstrates the features of the energy
distributions and eigenmodes of the 1D periodic active interfaces
manipulated by the pneumatic strategy. The exceptional

bulk-boundary effects, including the QSHE and QVHE, are uncov-
ered using the proposed active method.

VI. ACTIVE HIGHER-ORDER TOPOLOGICAL STATES

The 2D topological insulators can transfer energy along the
edge or interface with little loss. In recent years, another energy
transferring mode that transfers energy through the corners of the
2D or 3D topological materials is uncovered.13,16,178 The corner

FIG. 6. Active complex interfaces. (a) A living interface in organoids.184 Reproduced with permission from Karzbrun et al., Nat. Phys. 14, 515–522 (2018). Copyright 2021
Nature Springer. (b) Active square, (c) hexagonal, and (d) triangular interfaces are constructed by the actuations of PK or PM. They are PK = (−0.08, 0.14 kPa), PK = (−0.1,
0.16 kPa), and PM = (−0.11, 0.10 kPa), respectively.

FIG. 7. Edge or corner eigenmodes of the superstructures shown in Fig. 6. (a) Active square interface. (b) Active interfaces that can scale from hexgon-1 to hexgon-2 by
the programmed actuation PK. (c) Active interfaces that can scale from triangle-1 to triangle-2 by the programmed actuation PM. The green lines and circles denote the
first and higher (second) order states.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 133, 104504 (2023); doi: 10.1063/5.0141556 133, 104504-13

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/jap


state of the 2D (d = 2) topological insulator has zero dimension in
morphology and second (or higher) order in topology (n ¼ 2), and
it has lower energy loss compared to the classical 1D and first
order edge mode (n ¼ 1). In general, a d-dimensional and n-order
classical topology insulator (n < d, d > 1) has (d−1), (d−2), …, (d
−n−1) dimensional gapped boundary states and (d−n) dimen-
sional gapless boundary states.13,16,36,38,40,43–45,48,59,62,65,179

A. Active complex interfaces

Typically, these higher-order topological states occur in a
complex interface composed of topological and trivial microstruc-
tures. While it is difficult for the passive methods to actively, fast
construct these complex interfaces, e.g., the active interfaces of
nematic180–183 and multicellular systems [Fig. 6(a)].184,185 In this
section, we take the proposed active pneumatic method to find the
higher-order topological states in the 2D systems.

The proposed active method has a powerful capacity to con-
struct an active complex interface in 2D and 3D spaces. For sim-
plicity, we take the actuation PK and PM to construct the 2D square
[Fig. 6(b)], hexagonal [Fig. 6(c)], and triangular [Fig. 6(d)] inter-
faces,65,170 and they are PK = (−0.08 and 0.14 kPa), PK = (−0.10 and
0.16 kPa), and PM = (−0.11 and 0.10 kPa), respectively.

In Fig. 7, the 1D edge states and 0D higher-order corner states
of various active interfaces are uncovered through numerical eige-
nanalysis. Taking the square interface as an example, around the
DP as shown in Figs. 2(e) and 13(a), four edges contain high
energy distribution of displacement fields (green lines), except the
four corners at the active square interface. This energy transfer-
ring mode is the classical topological insulator. Besides, at the
four corners of the active square interface, there is a higher
energy distribution. These higher-order corner states (green
circles) are protected by the higher-order topological invariant
QC ¼ 4PxPy ,

13,40,44,186,187 where Px and Py are the components of
bulk polarization P. Therefore, the topological and trivial states
have the topological invariant QC ¼ 1and QC ¼ 0. Similarly, the
edge and corner states in Figs. 7(b) and 7(c) can be obtained
through the actuations of PK or PM, and their higher-order states
are also protected by the corresponding nonzero higher-order
topological invariants.16,17,36,39,45,60,187

The transmission from corner to corner reduces the energy
dissipation, which provides a new prospect for the design of func-
tional devices. In addition, the active interfaces can actively move
through the actuations of the programmed air chambers and liquid
metallic chambers, such as the interfaces hexagon-1 to hexagon-2
and interfaces triangle-1 to triangle-2. The proposed pneumatic

FIG. 8. (a) Superstructure contains ordered particle distributions as shown in Fig. 7, and its disordered eigenmode is shown in (b). (c) Probability distributions and
Shannon entropies of the structure in Fig. 7(a). (d) Probability distributions and Shannon entropies of the structure [Fig. 7(c)] that contains the hexgon-1 interface.
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strategy presents great flexibility for the design of active higher-
order topological metamaterials.

B. Information entropy

Further, the higher-order topology invariants cannot unveil
the intrinsic and remarkable differences in energy distributions
between the 1D edge states and the higher-order 0D corner states
for the 2D systems. In Fig. 8, the eigenmodes of the collective mass
particles in the superlattices [Fig. 8(a)] can be regarded as a statisti-
cal process for the mass locomotion in the eigenanalysis [Fig. 8(b)].
The degree of chaos indicated by the various particle aggregation
types can be measured by the information entropy theory.107,188

As examples, we measure the relative distances of metallic
chambers of the modes in Fig. 7(a) and the modes (triangle-1) in
Fig. 7(c). dij denotes the distance of each liquid metal cavity i to the
liquid metal cavity j in the neighborhood Ωi [Figs. 8(a) and 8(b)],
and the index satisfies i [ {1, 2, 3, . . . , N}, where N is the total
number of metal cavities in the superstructures. In the region Ωi,
there is a connected air chamber between the i and j liquid metal
cavities. Finally, all distances dij are in the interval [dmin, dmax],
and then we obtain

[dmin, dmin þ δd , dmin þ 2δd , . . . , dmax], (17)

where δd ¼ (dmax � dmin)/Nd , Nd is the number of discrete copies
of the interval. The probability event whose distance falls in the kth
(k [ {1, 2, 3, . . . , Nd}) subinterval in Eq. (17) is denoted as Xk,
and its probability is P(Xk). It is obvious to find that there is a clear
difference in Xk between the 1D edge state and 0D corner state,
and the Shannon entropy is written as

H ¼ �
XNd

k

P(Xk)log2P(Xk): (18)

In Figs. 8(c) and 8(d), the information entropy of the 1D
edge states is larger than the 0D corner states are H = 2.474 and
1.951 for the square interface [Fig. 6(e)] and H = 2.273 and 1.494
for the triangular interface. The results show that the higher-
order corner states contain lower chaos than the 1D edge states
(see the expected values σ and standard errors δ in Table VIII),
and this feature is not affected by the geometric shapes of the
interfaces. Our finding confirms the advantage of higher-order
energy transfer modes.

VII. CONCLUSIONS

In this article, we use the pneumatic actuation method to
design elastic topological insulators. This strategy has been

successfully demonstrated to uncover the active topological phase
transitions, active bulk-boundary effects, and active higher-order
topological states. First, we give the quantitative relation between
the connecting stiffness and vertex masses, which vary with respect
to the actuations PK and PM. To achieve mass exchange, the liquid
metal at the lattice vertex can exchange by the actuation of PM. The
dispersion curves of the 1D and 2D (C4, C6, and C3) unit cells are
calculated under different PK and PM. Besides, the opening–closing
states of the degeneracy DPs can be precisely and fast manipulated
by PK and PM, which provides a distinct advantage over the passive
methods. Further, the relations between the active topological
phase transitions and actuation are systematically uncovered
through numerical simulations and theoretical analysis.
Furthermore, we have extended this model to uncover the bulk-
boundary effects, including the quantum spin and valley hall states,
of the 1D periodic interfaces actuated by PK or PM. The synergetic
actuations PK and PM can broaden the design spaces of the topo-
logical metamaterials. The proposed method also allows us actively
construct complex 2D interfaces, which can achieve higher-order
topological corner states. In addition, the Shannon entropy is used
to elucidate the formation of the edge and corner states.

The strategy proposed in this work can be extended to design
some other, both 2D and 3D, active acoustic and photonic topolog-
ical insulators. For example, the artificial cylinders obtaining refrac-
tive index nm are taken to design the topological acoustic
metamaterials.59,189 Through tuning distances of these cylinders,
the topological behaviors of acoustic pseudospin multipoles are
achieved. Our pneumatic method can actively manipulate the dis-
tance of these cylinders. Besides, if the cylinders are composed of
dielectric materials, the topological photonic crystals can be
achieved.60,159

Finally, it is worth mentioning that the pneumatic strategy is
difficult to manipulate active structures at small scales. Therefore, it
deserves further theoretical and experimental efforts to design
active topological metamaterials and to efficiently perform unteth-
ered actuations, which could be achieved by using active cells, mag-
netic, or other techniques.190–192
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APPENDIX A: EXPERIMENTS AND MATERIALS

In this part, we describe the production process of the multi-
chambers [Fig. 1(d)]. It contains the following seven steps
[Figs. 9(b) and 9(c)]:

(i) Print the required mold (PLA material) using a 3D printer
(Ultimker 3);

(ii) Spray a layer of mold release agent RELEASE 200 on the
surface of the mold to facilitate later operations;

(iii) Use silicone Dragon Skin 30 to pour the air chamber (or liquid
chamber), after combining the chamber part of the mold, pour
the evenly mixed uncured silicone Dragon Skin 30, and leave it

for 10 h for the silicone to solidify completely, after demolding,
we can get the air chamber (or liquid chamber);

(iv) Use silicone Ecoflex00-30 to pour the intermediate film,
pour in the uncured silicone Ecoflex00-30 after uniform
mixing and dye it white, let it set for 4 h, then the silicone
will be completely solidified. After demolding, we can get
the intermediate film;

(v) Prepare two air chambers (or liquid chambers) and an inter-
layer film, punch holes in the sides of the two cavities and
insert the air tube (2 mm outer diameter, 1 mm inner diame-
ter) and seal the gap with silicone adhesive Sil-pox;

(vi) Apply silicone adhesive Sil-pox to the edges of the two cham-
bers and glue the interlayer film to the opening of one
chamber to achieve complete closure;

(vii) Finally, the other chamber is glued in the same way to create
a three-layer structure, the corresponding tube of the liquid
cavity is clamped with clamps and the liquid metal (gallium–
indium alloy, melting point 16 �C) is injected into its interior.
Finally, the pinhole is sealed with silicone adhesive Sil-pox.

APPENDIX B: NUMERICAL SIMULATIONS AND ACTIVE
THEORETICAL MODELS

1. Finite element method

We use the finite element method to uncover the chamber
deformations under pneumatic actuation. The following hyperelas-
tic neo-Hookean constitutive model is used to simulate the silicon

FIG. 9. (a) Geometric parameters of the connected air chambers. (b) gives the structural sizes of the fabricating molds of the vertex air and liquid chambers. (c) The pro-
duction process of the vertex chambers.
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rubber (silicone Ecoflex00-30) of the chambers,133

U ¼ C10(�I1 � 3)þ 1
D 1

(Jel � 1)
2
, (B1)

where C 10 and D 1 are the material parameters and �I1 and Jel are
the first deviatoric invariant and the elastic volume ratio, respec-
tively. In our simulation, the coefficients are set to be C10 = 0.00978
and D = 1.0025 in the commercial software Abaqus, the material
density is ρs = 1.05 × 10−3 g mm−3.133

2. Bloch theory

The Bloch periodic theory is taken into the eigenanalysis.133

In the unit cell, the opposite nodal displacements are written as

u(x0 þ r) ¼ u(x0) e
i k�a, (B2)

where x0 and x 0 þ r are the coordinates of the opposite edges in
the unit cell. a is the vector of the opposite edge. r ¼ ax þ ay is the
unit directional vector, and ax ¼ axex , where ex is the normalized
unit basal vector, ax is the length of the unit cell along the ex .
k ¼ (kx , ky) is the wave vector in the reciprocal unit cell with its
periodic unit vector b [Figs. 8(b), 8(e), and 8(h)], and it satisfies

ai � bj ¼ 2πδij (i, j ¼ 1, 2), (B3)

where δij is the Kronecker delta. The eigenanalysis is performed in
the software Abaqus.

3. Active spring-mass models

Spring-mass model is widely used in the frequency analysis of
classical elastic waves. Specifically, it is also used to find the topol-
ogy effects in the phononic metamaterials based on the tight SSH
models. However, the varying mass and coupling stiffness lack real
physical properties, which are not controlled by an external actua-
tion. The varying mass strategies, including the rotating gyroscopes,
ground frames, and magnetic fluid, are taken into the topological

phononic metamaterial design. However, the varying masses have
no explicit relations with the actuation forces. Here, based on
Eqs. (1)–(5), the governing equations are obtained by using the
Lagrangian equations6,84,174,193

d
dt

@L
@ _u

� �
¼ @L

@u
: (B4)

In what follows, we discuss four cases, which contain the 1D,
C4, C6, and C3 lattices, respectively.

(1) The governing equations for the 1D active unit cell are

m(n)
1 (PM)€u

(n)
1 ¼ �[u1(n) � u2(n)]k

(n)
1 (PK)

� [u1(n) � u2(n�1)]k
(n)-(n�1)
2 (PK), (B5)

m(2)
2 (PM)€u

(2)
2 ¼ �[u2(n) � u1(nþ1)]k

(n)�(nþ1)
2 (PK)

� [u2(n) � u1(2)]k
(n)
1 (PK), (B6)

where PM = 0 in Eqs. (B5) and (B6), which indicates m1 =m2

=m0, m0 = ρ0V0. n = 0 indicates the index of the initial unit
cell. By inserting the Bloch periodic boundary
u ¼ �uei(q ax �k�ω t), where q [ {+1, 0}, into Eqs. (B5) and (B6),
we can obtain the eigenequation

H
͡

2�2�u2�1 ¼ ω2M2�2�u2�1, (B7)

where

H͡¼ k1(PK)þ k2(PK) �k1(PK)� k2(PK)e�iax kx

�k1(PK)� k2(PK)eia xkx k1(PK)þ k2(PK)

" #
and

M ¼ m1 0

0 m2

� �
: (B8)

(2) The active Lagrangian function of the C4 [Fig. 8(c)] unit cell is

L PKð Þ¼ 1
2

X4
i

m0 _u2i 0,0ð Þ þ _v2i 0,0ð Þ
� �" #

�1
2
~k2 u1 0,0ð Þ �u4 �1,0ð Þ
� �2

þ v1 0,0ð Þ � v2 0,1ð Þ
� �2� �

�1
2
~k2 u2 0,0ð Þ �u3 �1,0ð Þ
� �2

þ v2 0,0ð Þ � v1 0,�1ð Þ
� �2� �

�1
2
~k2 u3 0,0ð Þ �u2 1,0ð Þ
� �2

þ v3 0,0ð Þ �v4 0,�1ð Þ
� �2� �

�1
2
~k2 u4 0,0ð Þ �u1 1,0ð Þ
� �2

þ v4 0,0ð Þ �v3 0,1ð Þ
� �2� �

�1
2
~k1 u1 0,0ð Þ �u4 0,0ð Þ
� �2

þ u2 0,0ð Þ �u3 0,0ð Þ
� �2� �

�1
2
~k1 v1 0,0ð Þ �v2 0,0ð Þ
� �2

þ v2 0,0ð Þ �v4 0,0ð Þ
� �2� �

,

(B9)

where ~k1 ¼ k1(PK) and ~k2 ¼ k2(PK) are the intracell and intercell
active stiffness, respectively, and index (p, q) is set as (0, 0). Using
the Bloch theory [Fig. 10(c)], we can obtain the governing
equations

�m0ω
2�u1(0,0) ¼ (�~k1 � ~k2)�u1(0,0) þ (~k1 þ ~k2e

�ikxax )�u4(0,0), (B10)

�m0ω
2�v1(0,0) ¼ (�~k1 � ~k2)�v1(0,0) þ (~k1 þ ~k2e

ikyay )�v2(0,0), (B11)
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�m0ω
2�u2(0,0) ¼ (�~k1 � ~k2)�u2(0,0) þ (~k1 þ ~k2e

�ikxax )�u3(0,0), (B12)

�m0ω
2�v2(0,0) ¼ (�~k1 � ~k2)�v2(0,0) þ (~k1 þ ~k2e

�iky ay )�v1(0,0), (B13)

�m0ω
2�u3(0,0) ¼ (�~k1 � ~k2)�u3(0,0) þ (~k1 þ ~k2e

ikx ax )�u2(0,0), (B14)

�m0ω
2�v3(0,0) ¼ (�~k1 � ~k2)�v3(0,0) þ (~k1 þ ~k2e

�iky ay )�v4(0,0), (B15)

�m0ω
2�u4(0,0) ¼ (�~k1 � ~k2)�u4(0,0) þ (~k1 þ ~k2e

ikx ax )�u1(0,0), (B16)

�m0ω
2�v4(0,0) ¼ (�~k1 � ~k2)�v4(0,0) þ (~k1 þ ~k2e

iky ay )�v3(0,0): (B17)

Then, the eigenequation is

H
͡

8�8�u8�1 ¼ ω2M8�8�u8�1, (B18)

where M ¼ m0I8�8 is the mass matrix, and H
͡
is the active

Hamilton matrix, whose elements are

diag (H) ¼ ~k1 þ ~k2, H17 ¼ H35 ¼ �~k1 � ~k2e
�ik xa x , (B19)

H24 ¼ H68 ¼ �~k1 � ~k2e
�iky a y , H

y
71 ¼ H17, (B20)

H
y
53 ¼ H35, H

y
42 ¼ H24, H

y
86 ¼ H68, (B21)

FIG. 10. (a), (d), and (g) Active composite microstructures with C4, C6, and C3 symmetry, and their crystal lengths are a, l, and s, respectively. The crystal vectors in (a)
are a1 ¼ a(1, 0) and a2 ¼ a (0, 1). The crystal vectors in (d) are aK1 ¼ l (3/2,

ffiffiffi
3

p
/2) and aK2 ¼ l (3/2, � ffiffiffi

3
p

/2). The crystal vectors in (g) are aM1 ¼ a0 (
ffiffiffi
3

p
, 0) and

aM2 ¼ a0 (
ffiffiffi
3

p
/2, 3/2), a0 = 20 mm is the mass distance in (g). (b), (e), and (h) The corresponding Brillion zones of the C4, C6, and C3 microstructures. (c), ( f ), and (i) are

the Bloch periodic boundary conditions for the 2D active theoretical models.
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FIG. 11. Dispersion surfaces in the entire Brillouin zone for C4 (a), C6 (b), and C3 (c) microstructures under different PK or PM.

FIG. 12. Berry curvatures under different actuations PK (C6 unit cell).
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where other elements are zero, the symbol “y” denotes the conjugate operator, and ax ¼ ay ¼ a.
(3) The active Lagrangian function of the C6 unit cell [Fig. 10(f )] is

L ¼ m 1(PM)
2

_u21(0,0) þ _u23(0,0) þ _u25(0,0) þ _v21(0,0) þ _v23(0,0) þ _v25(0,0)

h i
þm2(PM)

2
_u22(0,0) þ _u24(0,0) þ _u26(0,0) þ _v22(0,0) þ _v24(0,0) þ _v26(0,0)

h i

�
~k 2

2
u1 (0,0) � u4 (0,�1)½ � � e1(0,0)-4(0,�1)


 �2 � ~k 2

2
u2, (0,0) � u5 (�1,0)½ � � e2(0,0)-5(�1,0)


 �2 � ~k 2

2
u3(0,0) � u6(�1,1)½ � � e3(0,0)-6(�1,1)


 �2
�
~k 2

2
u4(0,0) � u1(0,1)½ � � e4(0,0)-1(0,1)
 �2 � ~k 2

2
u5(0,0) � u2(1,0)½ � � e5(0,0)-2(1,0)
 �2 � ~k 2

2
u6(0,0) � u3(1,�1)½ � � e6(0,0)-3(1,�1)


 �2
�
~k 1

2
u1 (0,0) � u2 (0,0)½ � � e1(0,0)-2(0,0)
 �2 � ~k 1

2
u2 (0,0) � u3 (0,0)½ � � e2(0,0)-3(0,0)
 �2 �

~k 1

2
u3 (0,0) � u4 (0,0)½ � � e3(0,0)�4(0,0)


 �2
�
~k 1

2
u4 (0,0) � u5 (0,0)½ � � e4(0,0)-5(0,0)
 �2 � ~k 1

2
u5 (0,0) � u6 (0,0)½ � � e5(0,0)-6(0,0)
 �2 � ~k 1

2
u6 (0,0) � u1 (0,0)½ � � e6(0,0)-1(0,0)
 �2

, (B22)

where ui(0, 0) ¼ (ui, vi)(0,0), (i ¼ 1, 2, . . . , 6) is the displacement
vector of ith vertex mass, and the directional vectors of the active
springs are

e1(0,0)-2(0,0) ¼ (0, �1), e2(0,0)-3(0,0) ¼
ffiffiffi
3

p

2
, �1

2

� �
,

e3(0,0)-4(0,0) ¼
ffiffiffi
3

p

2
,
1
2

� �
,

(B23)

e4(0,0)-5(0,0) ¼ (0, 1), e5(0,0)-6(0,0) ¼ �
ffiffiffi
3

p

2
,
1
2

� �
,

e6(0,0)-1(0,0) ¼ �
ffiffiffi
3

p

2
, �1

2

� �
,

(B24)

e1(0,0)-4(0,�1) ¼ �
ffiffiffi
3

p

2
,
1
2

� �
, e2(0,0)-5(�1,0) ¼ �

ffiffiffi
3

p

2
, � 1

2

� �
,

e3(0,0)-6(�1,1) ¼ (0, �1),

(B25)

e4(0,0)�1(0,1) ¼
ffiffiffi
3

p

2
, � 1

2

� �
, e5(0,0)�2(1,0) ¼

ffiffiffi
3

p

2
,
1
2

� �
,

e6(0,0)�3(1,�1) ¼ (0, 1): (B26)

Similarly, 12 governing equations of the C6 unit cell are

m1 _u
2
1(0,0) ¼ �3

4
~k2 � 3

4
~k1

� �
u1(0,0) þ

ffiffiffi
3

p

4
~k2 �

ffiffiffi
3

p

4
~k1

� �
v1(0,0)

þ 3
4
~k2u4(0,�1)�

ffiffiffi
3

p

4
~k2v4(0,�1)þ 3

4
~k1u6(0,0)

þ
ffiffiffi
3

p

4
~k1v6(0,0), (B27)

FIG. 13. (a)–(c) Dispersion frequencies correspond to the eigenmodes shown in Figs. 7(a)–7(c). The yellow and red frames denote the edge and corner states,
respectively.
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m1 _v
2
1(0,0) ¼

ffiffiffi
3

p

4
~k2 �

ffiffiffi
3

p

4
~k1

� �
u1(0,0)þ �

~k2
4
� 5
4
~k1

 !
v1(0,0) þ~k1v2(0,0)

�
ffiffiffi
3

p

4
~k2u4(0,�1)þ

~k2
4
v4(0,�1)þ

ffiffiffi
3

p

4
~k1u6(0,0)þ

~k1
4
v6(0,0),

(B28)

m2 _u
2
2[0,0� ¼ �3

4
~k2� 3

4
~k1

� �
u2(0,0) þ

ffiffiffi
3

p

4
~k1�

ffiffiffi
3

p

4
~k2

� �
v2(0,0)

þ 3
4
~k1u3(0,0) �

ffiffiffi
3

p

4
~k1v3(0,0)þ

ffiffiffi
3

p

4
~k2u5(�1,0)þ

ffiffiffi
3

p

4
~k2v5(�1,0),

(B29)

m2 _v
2
2(0,0) ¼ k1v1(0,0)þ

ffiffiffi
3

p

4
~k1 �

ffiffiffi
3

p

4
~k2

� �
u2(0,0)þ �5

4
~k1 �

~k2
4

 !
v2(0,0)

�
ffiffiffi
3

p

4
~k1u3(0,0)þ

~k1
4
v3(0,0)þ

ffiffiffi
3

p

4
~k2u5(�1,0)þ

~k2
4
v5(�1,0),

(B30)

m1 _u
2
3(0,0) ¼

3
4
~k1u2(0,0)�

ffiffiffi
3

p

4
~k1v2(0,0)� 3

2
~k1u3(0,0)þ 3

4
~k1u4(0,0)

þ
ffiffiffi
3

p

4
~k1v4(0,0), (B31)

m1 _v
2
3[0,0] ¼�

ffiffiffi
3

p

4
~k1u2(0,0)þ

~k1
4
v2(0,0)þ �~k2�

~k1
2

 !
v3(0,0)

þ
ffiffiffi
3

p

4
~k1u4(0,0)þ

~k1
4
v4(0,0)þ~k2v6(�1,1), (B32)

m2 _u
2
4(0,0) ¼

3
4
~k2u1(0,0)�

ffiffiffi
3

p

4
~k2v1(0,1)þ 3

4
~k1u3(0,0)þ

ffiffiffi
3

p

4
~k1v3(0,0)

þ �3
4
~k2� 3

4
~k1

� �
u4(0,0)þ

ffiffiffi
3

p

4
~k2�

ffiffiffi
3

p

4
~k1

� �
v4(0,0),

(B33)

m2 _v
2
4(0,0) ¼�

ffiffiffi
3

p

4
~k2u1(0,1)þ

~k2
4
v1(0,1)þ

ffiffiffi
3

p

4
~k1u3(0,0)þ

~k1
4
v3(0,0)

þ
ffiffiffi
3

p

4
~k2 �

ffiffiffi
3

p

4
~k1

� �
u4(0,0)þ �

~k2
4
� 5
4
~k1

 !
v4(0,0)

þ~k1v5(0,0), (B34)

m1 _u
2
5(0,0) ¼

3
4
~k2u2(1,0)þ

ffiffiffi
3

p

4
~k2v2(1,0)þ �3

4
~k2� 3

4
~k1

� �
u5(0,0)

þ
ffiffiffi
3

p

4
~k1 �

ffiffiffi
3

p

4
~k2

� �
v5(0,0)þ

ffiffiffi
3

p

4
~k1u6(0,0)�

ffiffiffi
3

p

4
~k1v6(0,0),

(B35)

m1 _v
2
5(0,0) ¼

ffiffiffi
3

p

4
~k2u2(1, 0) þ

~k2
4
v2(1, 0) þ ~k1v4(0, 0) þ �

ffiffiffi
3

p

4
~k2 þ

ffiffiffi
3

p

4
~k1

� �
u5(0, 0)

þ �
~k2
4
� 5
4
~k1

� �
v5(0, 0) �

ffiffiffi
3

p

4
~k1u6(0, 0) þ

~k1
4
v6(0, 0),

(B36)

m2 _u
2
6(0, 0) ¼

3
4
~k1u1(0, 0) þ

ffiffiffi
3

p

4
~k1v1(1, 0) þ 3

4
~k1u5(0, 0)

�
ffiffiffi
3

p

4
~k1v5(0, 0) � 3

2
~k1u(0, 0), (B37)

m2 _v
2
6(0, 0) ¼

ffiffiffi
3

p

4
~k1u1(0,0) þ

~k1
4
v1(0, 0) þ ~k2v3(1,�1)

�
ffiffiffi
3

p

4
~k1u5(0, 0) þ

~k1
4
v5(0, 0) þ �~k2 �

~k1
2

 !
v6(0, 0): (B38)

By combing the periodic Bloch theory u ¼ �u eik�[(p aK1þq aK2)�ωt],
where p, q [ {+1, 0}, and the crystal vectors in (d) are
aK1 ¼ l(3/2,

ffiffiffi
3

p
/2) and aK2 ¼ l(3/2, � ffiffiffi

3
p

/2). Equations (B27)–
(B38) can be written as

[H12�12(PK)þ ω2M12�12]�u12�1 ¼ 0, (B39)

where H(PK) is the active Hamilton matrix. All the components are
written as

H1, 1 ¼ � 3
4
~k2 � 3

4
~k1, H1, 2 ¼

ffiffiffi
3

p

4
~k2 �

ffiffiffi
3

p

4
~k1, H1, 7 ¼ 3

4
~k2e

i[k�(�aK2)],

H1, 8 ¼ �
ffiffiffi
3

p

4
~k2e

i[k�(�aK2)], H1, 11 ¼ 3
4
~k1, H1, 12 ¼

ffiffiffi
3

p

4
~k1,

(B40)

H2, 1 ¼H1,2, H2, 2 ¼�
~k2
4
�5
4
~k1,H2, 4 ¼~k1, H2, 7 ¼�

ffiffiffi
3

p

4
~k2e

i[k�(�aK2)]

H2, 8 ¼
~k2
4
ei[k�(�aK2)], H2, 11 ¼

ffiffiffi
3

p

4
~k1, H2, 12 ¼

~k1
4
;

(B41)

H3, 3 ¼H1,1, H3, 4 ¼
ffiffiffi
3

p

4
~k1�

ffiffiffi
3

p

4
~k2, H3, 5 ¼ 3

4
~k1,

H3, 6 ¼�
ffiffiffi
3

p

4
~k1, H3, 9 ¼ 3

4
~k2e

i[k�(�aK1)], H3, 10 ¼
ffiffiffi
3

p

4
~k2e

i[k�(�aK1)];

(B42)

H4, 2 ¼H2,4, H4, 3 ¼H3,4, H4, 4 ¼H2,2, H4, 5 ¼�
ffiffiffi
3

p

4
~k1,

H4, 6 ¼
~k1
4
, H4, 9 ¼

ffiffiffi
3

p

4
~k2e

i[k�(�aK1)], H4, 10 ¼
~k2
4
ei[k�(�aK1)]; (B43)
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H5, 3 ¼H3,5, H5, 4 ¼H4, 5, H5, 5 ¼�3
2
~k1, H5, 7 ¼ 3

4
~k1, H5, 8 ¼

ffiffiffi
3

p

4
~k1;

H6, 3 ¼H3,6, H6, 4 ¼H4,6, H6, 6 ¼�~k2�
~k1
2
,

(B44)

H6, 7 ¼
ffiffiffi
3

p

4
~k1, H6, 8 ¼

~k1
4
, H6, 12 ¼~k2e

i[k�(�aK1þaK2)];

H7, 1 ¼Hy
1,7, H7, 2 ¼Hy

2,7, H7, 5 ¼H5,7, H7, 6 ¼H6,7,

(B45)

H7, 7 ¼�3
4
~k2�3

4
~k1, H7, 8 ¼

ffiffiffi
3

p

4
~k2�

ffiffiffi
3

p

4
~k1;

H8, 1 ¼Hy
1,8, H8, 2 ¼Hy

2,8, H8, 5 ¼H5,8, H8, 6 ¼H6,8,

(B46)

H8, 7 ¼H7,8, H8, 8 ¼�
~k2
4
�5
4
~k1, H8, 10 ¼~k1;

H9, 3 ¼H
y
3,9, H9, 4 ¼H

y
4,9, H9, 9 ¼�3

4
k2�3

4
k1,

(B47)

H9, 10 ¼
ffiffiffi
3

p

4
~k1�

ffiffiffi
3

p

4
~k2, H9, 11 ¼ 3

4
~k1, H9, 12 ¼�

ffiffiffi
3

p

4
~k1;

H10, 3 ¼H
y
3,10, H10, 4 ¼H

y
4,10, H10, 8 ¼H8,10, H10, 9 ¼H9,10,

(B48)

H10, 10 ¼�
~k2
4
�5
4
~k1, H10, 11 ¼�

ffiffiffi
3

p

4
~k1, H10, 12 ¼

~k1
4
;

H11, 1 ¼H1,11, H11, 2 ¼H2,11, H11, 9 ¼H9,11,
(B49)

H11, 10 ¼�
ffiffiffi
3

p

4
~k1, H11, 11 ¼�3

2
~k1;

H12, 1 ¼H1,12, H12, 2 ¼H2,12, H12, 6 ¼H
y
6,12,

(B50)

H12, 9 ¼H9,12, H12, 10 ¼H10,12, H12, 12 ¼�~k2�
~k1
2
, (B51)

where other elements are zero, and the mass matrix is

Diag(M)¼ (m1, m1, m2, m2, m1, m1, m2, m2, m1, m1, m2, m2),

(B52)

where other components are zero.

(4) The Lagrangian function of the C3 unit cell [Fig. 10(i)] is

L ¼ 1
2
m1(p,q)(PM)[ _u

2
1(p,q) þ _v21(p,q)]þ

1
2
m2(p,q)(PM) _u22(p,q) þ _v22(p,q)

h i
� 1
2
k0

ffiffiffi
3

p

2
(u1, v1)(p,q) �

1
2
(u2, v2)(p,q�1)

� �2

� 1
2
k0 �

ffiffiffi
3

p

2
(u1, v1)(p,q) �

1
2
(u2, v2)(p þ 1,q�1)

� �2
� 1
2
k0

ffiffiffi
3

p

2
(u1, v1)(p,q) �

1
2
(u2, v2)(p,q þ 1)

� �2

� 1
2
k0 �

ffiffiffi
3

p

2
(u1, v1)(p,q) �

1
2
(u2, v2)(p-1,q þ 1)

� �2
� 1
2
k0[v1(p,q) � v2(p,q)]

2, (B53)

where PK = 0 indicates k1 ¼ k2 ¼ k0. Based on the Lagrangian theory, we can obtain the following equations:

m1(PM)€u
2
1(0, 0) ¼ �k0

3
2
u1(0, 0) � 3

4
u2(0,�1) � 3

4
u2(1,�1) �

ffiffiffi
3

p

4
v2(0,�1) þ

ffiffiffi
3

p

4
v2(1,�1)

� �
, (B54)

m1(PM)€v
2
1(0, 0) ¼ �k0 �

ffiffiffi
3

p

4
u2(0,�1) þ

ffiffiffi
3

p

4
u2(1,�1) þ 1

2
v1(0, 0) � 1

4
v2(0,�1) � 1

4
v2(1, � 1) � v1(0, 0) þ v2(0, 0)

� �
, (B55)

m2(PM)€u
2
2(0,0) ¼ �k0

3
2
u2(0, 0) � 3

4
u1(0, 1) � 3

4
u1(�1, 1) �

ffiffiffi
3

p

4
v1(0, 1) þ

ffiffiffi
3

p

4
v1(�1, 1)

� �
, (B56)

m2(PM)€v
2
2(0, 0) ¼ �k0 �

ffiffiffi
3

p

4
u1(0, 1) þ

ffiffiffi
3

p

4
u1(�1, 1) þ 1

2
v2(0, 0) � 1

4
v1(0, 1) � 1

4
v2(�1, 1)þ v1(0, 0) � v2(0, 0)

� �
: (B57)
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Similarly, we can obtain

�m1(PM)ω
2u1(0, 0) ¼ � 3

2
k0u1(0, 0) þ 3

4
k0u2(0, 0) e

ik�(�a2) � eik�(a1þa2)
� 
� ffiffiffi

3
p

4
k0v2(0, 0) e

ik�(�a2) � eik�(a1�a2)
� 


, (B58)

�m1(PM)ω
2v1(0, 0) ¼

ffiffiffi
3

p

4
k0u2(0, 0) e

ik�(�a2) � eik�(a1�a2)
� 
� 3

2
k0v1(0, 0) þ 1

4
k0u2(0, 0) e

ik�(�a2) þ eik�(a1þa2) þ 1
� 


, (B59)

�m2(PM)ω
2u1(0, 0) ¼ � 3

2
k0u2(0, 0) þ 3

4
k0u1(0, 0) e

ik�a2 þ eik�(�a1þa2)
� 
þ ffiffiffi

3
p

4
k0v1(0, 0) e

ik�a2 � eik�(�a1þa2)
� 


, (B60)

�m2(PM)ω
2v2(0, 0) ¼

ffiffiffi
3

p

4
k0u1(0, 0) e

ik�a2 � eik�(�a1þa2)
� 
� 3

2
k0v2(0, 0) þ 1

4
k0v1(0, 0) e

ik�a2 þ eik�(�a1þa2) þ 1
� 


, (B61)

where aM1 ¼ (
ffiffiffi
3

p
a0, 0) and aM2 ¼ (

ffiffiffi
3

p
/2a0, 3/2a0) are the crystal

vectors, and the eigenequation is written as

H4�4 þ ω2M4�4(PM)
� 


�u4�1 ¼ 0, (B62)

where the elements of the Hamilton matrix are

diag(H) ¼ � 3
2
k, H13 ¼ 3

4
k e-ik�aM2 þ eik�(aM1�aM2)
� 


,

H1,4 ¼
ffiffiffi
3

p

4
k e ik�(�aM2) � e ik�(aM1�aM2)
� 


,
(B63)

H23 ¼
ffiffiffi
3

p

4
k e�ikaM2 � eik�(aM1�aM2)
� 


,

H24 ¼ k
1
4
e�ik�aM2 þ 1

4
eik�(aM1�aM2) þ 1

� �
,

(B64)

H31 ¼ 3
4
k eik�aM2 þ eik�(�aM1þaM2)
� 


,

H32 ¼
ffiffiffi
3

p

4
k eik�aM2 � eik�(�aM1þaM2)
� 


,
(B65)

H41 ¼
ffiffiffi
3

p

4
k eik�aM2 � eik�(�aM1þaM2)
� 


,

H42 ¼ k
1
4
eik�aM2 þ 1

4
eik�(�aM1þaM2) þ 1

� �
:

(B66)

The active mass matrix is

diag(M) ¼ m1(PM), m1(PM), m2(PM), m2(PM)½ �, (B67)

where other components are zero.
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